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ABSTRACT 

In this paper, we prove that the injective cover of the R-module E(RI~)/R/~ 
for a prime ideal ~ of R is the direct sum of copies of E(R/~) for prime ideals 

D ~, and if ~ is maximal, the injective cover is a finite sum of copies of 
E(R/~). For a finitely generated R-module M with n generators and G an 
injective R-module, we argue that the natural map G ~ -- G~/HomR(M, G) is 
an injective precover if Ext[(M, R) ffi 0, and that the converse holds ifG is an 
injective cogenerator of R. Consequently, for a maximal ideal ~ of R, 
depth~ R > 2 if and only if the natural map E(R/~)-- ,E(R/~)/R/~ is an 
injective cover and depthn R > 0. 

1. Introduct ion 

R will d e n o t e  a c o m m u t a t i v e  n o e t h e r i a n  ring. 

A n  inject ive  cove r  o f  an  R - m o d u l e  M is a l inear  m a p  ~/: E --, M wi th  E an  

in ject ive  R - m o d u l e  such  tha t  

(1) fo r  any  inject ive  R - m o d u l e  E l a n d  l inear  m a p  E t - ~ M ,  the  d i a g r a m  

g I 

/ 

///// J / 

E , M  

can  be  c o m p l e t e d  to  a c o m m u t a t i v e  d i a g r a m  
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(2) the diagram 

E 
/ 

/ /1 / 
/ 

/ 
, /  

E , M  
¥ 

can only be completed by automorphisms of  E. 
Hence if an injective cover exists, it is unique up to isomorphism. If  

~ / :E  ~ M  satisfies (1) and perhaps not (2), it is called an injective precover. 
We will sometimes simply say E is an injective cover (or precover). 

It was shown by Enochs [2] that a ring is noetherian if and only if every R- 
module has an injective precover, or equivalently, every R-module  has an 
injective cover. However, examples of  injective covers are hard to come by. 
The first non-trivial example was computed by the first two authors when 
R = k [ x l , . . . ,  xn], n >_- 2 where k is a field. In this case, let ~ = ( x , . . . ,  xn), 
R/~ = k (with x~k = 0 for i = 1, 2 . . . . .  n) and E(k) denote the injective 
envelope of  k. Then the natural map E(k) -~ E(k)/k is an injective cover. This 
used Northcott 's description [6] of  E(k) as the inverse polynomial ring 
k[xi-~,x2 -~ . . . . .  x~-l]. The other example is when R is an n-dimensional 
regular local ring with residue field k. I f  n >_-2, then again the natural 
map E(k)-~ E(k)/k is an injective cover. (See Jenda [4, Corollary 4.2]). 

The object of  this paper is to generalize these examples and to investigate the 
injective covers of  the R- modules E(R/~)/R/Y~ where ~ E Spec R. 

2. Main Theorem 

THEOREM 2.1. I f  ~ is a prime ideal in R, then the injective cover oJ 
E(R/~)/R/~ is the direct sum of copies of E(R/~) for prime ideals ~ such that 

D ~. I f ~  ~ Ass(R), then the injective co vet is the sum of copies ofE(R/~). I/ 
is maximal, then the cover is a direct sum of finitely many copies of E(R/~). 

PROOF. Let ~, ~ E Spec R. If  ~ ¢ ~ ,  let r E ~, r ~ £~. Then multiplication 
by r on E(R/~) is an isomorphism and is zero on R/~. So 
Ext~(E(R/£~), R/~) = O. This means that the diagram 
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E(R/~) 

E(R/~3) , E(R/~)/R/~ 

can be completed when the horizontal map is the natural map and the vertical 

one is arbitrary. 

Hence to construct an injective precover, it suffices to find an injective R- 

module E and a map E --,. E(R/~)/R/~ such that the diagram 

E(R/~) 
/ 

/ 
/ 

/ 
/ 

E , E ( R / ~ ) / R / ~  

can be completed whenever ~ D ~ for then 

E(R/,~) 

E ~E(R/~) , E(R/~)/R/~ 

can be completed for any ~ ~ Spec R. Since every injective R-module ir the 

direct sum of copies of such E(R/~) by Matlis [5], E ~ E(R/~) ---., E(R/~)/R/~ 
is a precover. So we let E be the direct sum of sufficiently many copies of the R- 

modules E(R/~) where ~ D ~. Then clearly, there is a map E ---, E(R/~)/R/~ 
satisfying the above. But an injective cover is a direct summand ofa precover, 

and thus is also a direct sum of such copies. 

If ~ ~ Ass(R), let K c E(R/~) be the field of fractions of R/% If ~ ~ ~ and 
E(R/~)---,.E(R/~)/R/~ is a map, consider the composition E(R/¢~)---, 
E(R/~)/R/~---,. E(R/~)/K. But 

K = (R/~)~, E(R/~) = E(R/~)~, E(R/~)/K = (E(R/~)/K)~, E(RI~)~ = O. 

Thus E(R/:3)~ E(R/~)/K is the zero map. Hence the original map E(R/~)---, 
E(R/~)/R/~ maps E(R/~) onto K/(R/~). But ~Ass(R). So there exists an 

r~ which is not a zero divisor. Thus E(R/~) is divisible by r. But 

multiplication by r on K/(R/~) is zero, and so any map E(R/:3)--,. K/(R/~) is 
zero. Consequently, any map E(R/~.)--.E(R/~)/R/~ is zero for any prime 
ideal ~ ~ ~. Hence the injective cover of E(R/~)/R/~ is a direct sum of 
copies of E(R/~). 
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If ~ is maximal, then the injective cover consists of copies of E(R/~) since 
~3 C ~ implies ~3 = 2.  We now show that a finite number of copies suitices. Let 
M ~ denote the Matlis dual HomR(M, E(R/~)) of an R-module M. Then 
E(R/~) ~ = / ~ ,  the completion of R at ~ and (E(R/~)/R/~) v is isomorphic to 
the maximal ideal m(/~)  ofR~. Hence by duality, to find an injective cover of 
the desired form, we only need to argue that for some n ->__ 1, and some map 

m(/~)  ~ / ~ ,  the diagram 

m(/~)  , / ~  

R~ 

can be completed for any map m( /~) - - - /~ .  But /~ ,  is noetherian and so 
Hom~, (m ( /~) , /~)  is a finitely generated R-module. Let ai, th . . . . .  tr, be a set 

of generators. Then the map 

m(l~) ~%%"'"~ , 1~ 

satisfies the requirements. [] 

We now show that the injective cover of E(R/~)/R/~ can contain copies of 

E(R/~) where g ~ ~3. 

EXAMPLE 2.2. Let Z2 denote the ring of integers localized at 2, Q the field 
of rational numbers. Let R be the ring obtained by the D ~ M construction 
where D = Z2 and M is the simple Z2-module ZJ(2). Then ~ = 0 ~ M and 
~'  = (2) ~ M are the only prime ideals of R. It can be argued that 

E(R/~3') -- Q/Z 2 ~) 22/(2 ) 

with the proper scalar multiplication and that there is a non-zero R-homomor- 
phism E(R/~')--, K/(R/~) = Q/Z 2 where K c E(R/~) is the field of fractions 
of R/~ -- Z2. But HomR(E(R/~'), E(R/~)) = 0. So the cover of E(R/~)/R/~ 
cannot consist of copies of E(R/~) alone. Thus E(R/~') must appear in the 

cover of E(R/~)/R/~. 

3. E ( R I ~ )  as an injective cover 

We start with the following: 

THEOREM 3.1. Let M be a finitely generated R-module with n generators, 
and G be an injective R-module. I f  Ext~(M,R)--0 ,  then the natural 
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map G ~ ~ G~ /Hom~(M, G) is an injective precover. The con verse holds i f  G is 

an injective cogenerator o f  R.  

PROOf. Let E he an injective R-module. Then ExP(M, R ) =  0 implies 
Horn(Ext'(M, R), E) -- 0. But then Tor~(Hom(R, E), M) -- 0 by Cartan and 
Eilenberg [1, VI, pp. 120-121]. So Hom(Tor l (E ,M) ,G)=O.  Thus 
Ext'(E, Horn(M, G)) = 0 by Cartan and Eilenberg [1, VI, Proposition 5.1]. But 
M = R~/L for some submodule L ofR ~. So Horn(M, G) is a submodule ofG ~ . 
Hence the result follows since Extl(E, Hom(M, G)) -- 0 for all injective R- 
modules E. 

For the converse, note that G ~ Gn/Hom(M, G) is an injective precover 
means Ext'(E, Hom(M, G))= 0 for all injectives E. If G is an injective 
cogenerator, then ExP(E, Horn(M, G)) = 0 means Extl(M, R) -- 0 as above. [] 

REMARK. We note that the injective cover of Gn/Hom(M, G) is a direct 
summand of G n. 

THEOREM 3.2. Let ~ be a maximal ideal in R. Then the following are 
equivalent. 

(1) Ext~(R/~, R) = 0. 
(2) The natural map E ( R / ~ ) ~  E ( R / ~ ) / R / ~  is an injective cover. 

(3) Hom~n(m(/~), R~) is cyclic. 

PROOF. (1)=*(2). By Theorem 3.1 above, Ext~(R /~ ,R)=  0 implies that 
the natural map E ( R / ~ ) ~ E ( R / ~ ) / R / ~  is an injective precover since 
Hom(R/~,  E(R/~) )  ~-- R / ~ .  But an injective cover is a direct summand of 
E ( R / ~ )  and E ( R / ~ )  is indecomposable by Matlis [5]. Hence E ( R / ~ )  is the 
injective cover. 

(2) =* (1). If ~ '  E m Spec R and ~ ÷ ~ ' ,  let r E ~ ,  r ~ ~ ' .  Then r is an 
isomorphism on E(R/~ ' )  and is zero on R / ~ .  So Hom(R/~,  E(R/~ ' ) )  = O. 
Therefore 

aom( ,  
= E x t I ( E ,  R/~). 

Hence Ext'(E, R / ~ )  = 0 for all injective R-modules E implies 
Ex t t (R /~ ,R )  = 0 by Theorem 3.1 since (~),~ms~RE(R/~) is an injective 
cogenerator of R by Ishikawa [3, Corollary 3.2]. 
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(2)~*(3). By Matlis duality, if E(R/~) ' - -*E(R/~) /R/~  is an injective 
cover, then n is the least number of generators of Hom~.(m (/~), Rn). 

(3)=*(2). If H o m ~ . ( m ( / ~ ) , / ~ n )  is cyclic, then as in the proof of Theorem 
2.1, E(R/~) - - ,E(R/~) /R/~  is an injective precover and so is an injective 
cover, ra 

The following corollary generalizes the examples discussed in Section 1. 

COROLtARY 3.3. Let ~ be a maximal ideal of R. Then depth~ R > 2 i f  
and only i f  the natural map E(R/~)  ~ E (R /~ ) /R /~  is an injective co ver and 
depth~ R > 0. 

COROLLARY 3.4. Let ~ be a maximal ideal of R. Then depthn R -- 1 i f  
and only i f  the injective cover of E (R /~ ) /R /~  has at least two copies orE(R~ 
~ )  and depthn R > 0. 

PROOF. If depth~R = l,  then the natural mapE(R/~)~E(R/~)/R/~ 
is not an injective cover by Corollary 3.3 above. But the injective cover of 
E(RI~) /R /~  is a sum (finite) of copies of E(Rl~)  by Theorem 2.1. Hence 
the cover has more than one copy of E(R/~).  

The converse follows from Corollary 3.3. [] 
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